

Multifunction Phased Array Radar Symposium Wide Bandgap Device **Technology** Overview November 18, 2009 Jeff Barner

Cree, Inc.

jeff_barner@cree.com

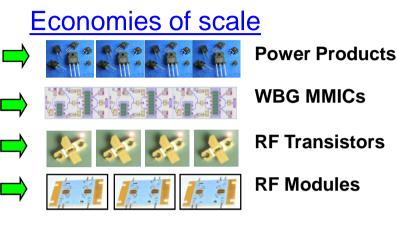
Cree Overview

- Founded in 1987 to Commercialize Wide Bandgap Materials and Devices
 - > Traded on NASDAQ (CREE)
- Annualized Sales \$567M (FY 2009)
- 3200+ Employees
- 3 U.S. Locations, applications offices and facilities in Europe and Asia

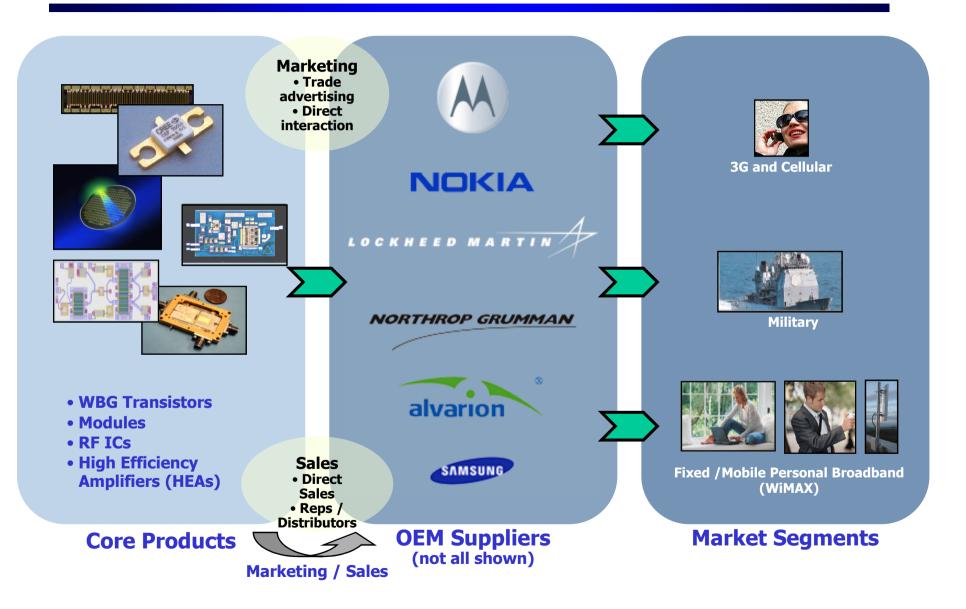
Excellence in Manufacturing

World's Largest Fabricator of GaN-on-SiC

- > 1000 wafers per day
- Ship >15 million devices per day
- World's Largest Supplier of SiC substrates
 - Supply 95% of the world's supply of single crystal SiC
- Vertical Integration
 - Crystal Growth => Device Fabrication => Package/Test



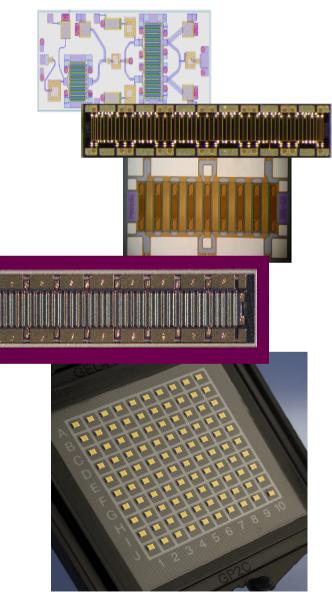
Cree WBG Technology Center of Excellence


Opened August 2006 to support large-scale commercial production and advanced research in SiC and GaN RF and Power products

- Located in Research Triangle Park (RTP), North Carolina
 - 2 miles from main campus
- Worlds largest dedicated WBG device production facility
 - > 40,000 sq. ft.
 - RF MMIC On-wafer probe / dice

- RF Production Package and Test
- Microwave Reliability Labs

RF Business Segments


Cree Microwave Process Technologies

Silicon Carbide MESFET

- 20 years -- Pioneering the Technology
- 4 years in production
 - 2nd Generation process fully released
- Growing production volume
- UHF to 4GHz geometries
- Discrete + MMIC processes

Gallium Nitride HEMT

- >10 years advancing R&D
 - One of the technology Pioneers
- UHF to 40GHz geometries in R&D
- 1st Generation Commercial Process
 - V3 DC-8 GHz Process released
 - X-Band Process targeted 2010
 - Ku-Band Process targeted 2011
 - Discrete + MMIC processes

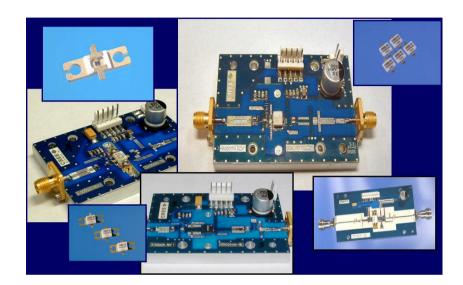
GaN Commercial Products

GaN HEMT for WiMax

Cree's GaN HEMT product line has been optimized for WiMax applications with tailored performance to obtain the best combination of bandwidth, efficiency, linearity and gain. Each device has been measured under 802.16-2004 compliant signals for offset mask compliance and EVM or RCE. The current voltage rail for Cree's GaN HEMT products is 28 volts.

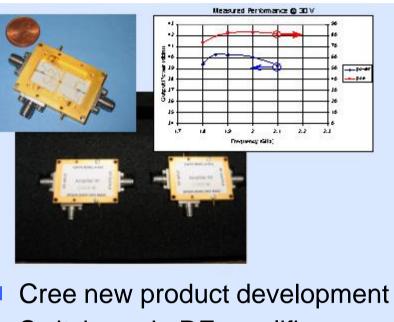
Product Family¹

Part Number	Frequency Band	Operating Voltage	Pave	Gain	802.16-2004 RCE ²	Drain Efficiency	Package	
CGH27015F	2.4 to 2.9 GHz	28 V	2 W	14 dB	34	24 %	440166	
CGN27120F	2.4 to 2.9 GHz	28 V	12 W	13 dB	31	20.96	440193	


Part Number	Frequency Band	Operating Voltage	Pave	Gain	802.16-2004 RCE ²	Drain Efficiency	Package
CGH35015F	3.3 to 3.9 GHz	28 V	2 W	12 dB	-34 dB	24 %	440166
CGH350155	3.3 to 3.9 GHz	28 V	2 W	12 dB	-34 dB	24 %	440178
CGH35030F	3.3 to 3.9 GHz	28 V	4 W	12 dB	-34 dB	23 %	440166
CGH35060P	3.3 to 3.9 GHz	28 V	8 W	12 dB	-33 dB	22 %	440193
CGN35120F	3.3 to 3.9 GHz	28 V	12 W	11 dB	-31 dB	20 %	440193

Note1: Performance features dependent on amplifer design approach. Note2: -34dB RCE is equivalent to 2% rms EVM.

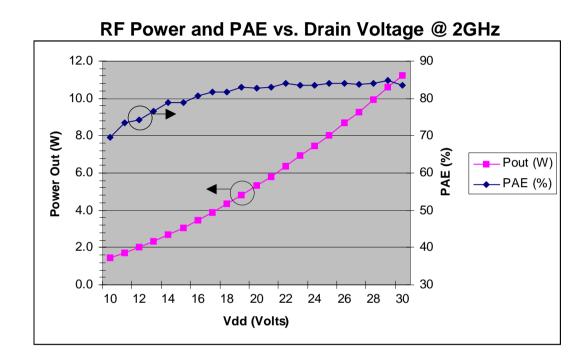
Package Types 440166, 440178, 440193, 440196



- GaN WiMAX Transistor Products
 - > 2.4 2.9 GHz
 - > 3.3 3.9 GHz
- General Purpose GaN Products > DC – 4 GHz (packaged)
 - > DC 6 GHz (bare die)
- Multiple die engines > 15, 30, 60, 120, 240 Watts

Digital Audio Meets Switch-mode GaN (the Future of MMIC PA technology)

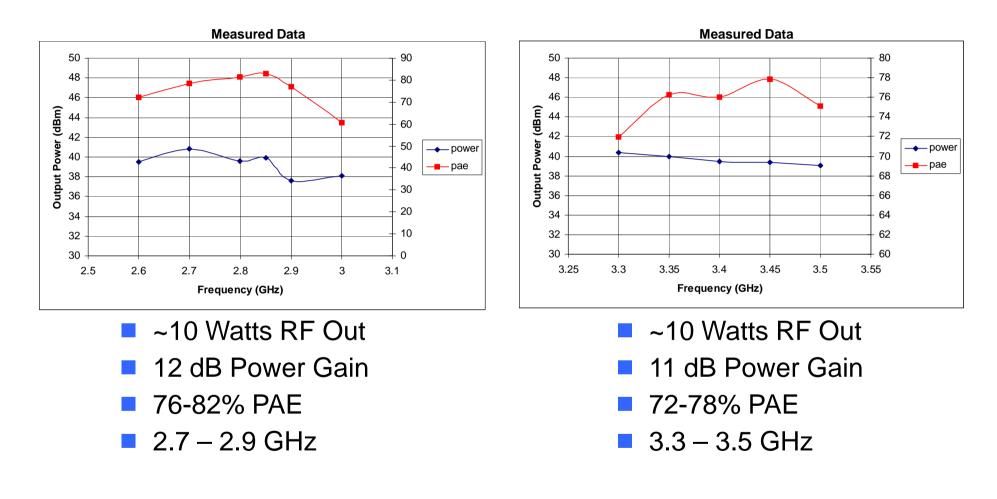
- Analog Devices: AD1992
- Class D analog amplifier (switch-mode)
- Vd = 5 volts
- Output Power = 10 W
- Efficiency = 84%



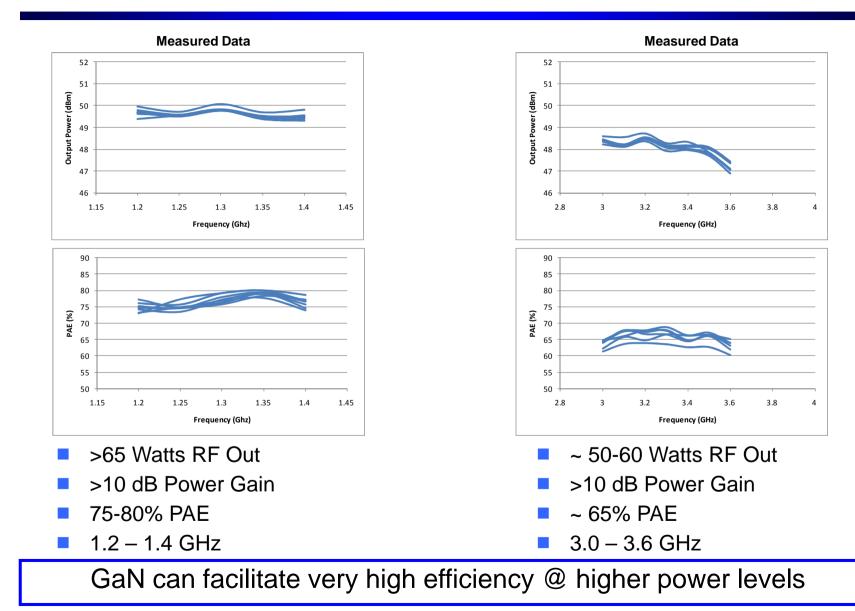
CREF

- Switch mode RF amplifier
- Vd = 30 volts
- RF Output Power = 10 W
- Power Added Efficiency = 84%!
- Frequency = 1.9-2.1 GHz

GaN is enabling ultra-high efficiency RF amplifiers with performance not thought possible 5 years ago


Switch-mode GaN (High Efficiency with Variable Power!)

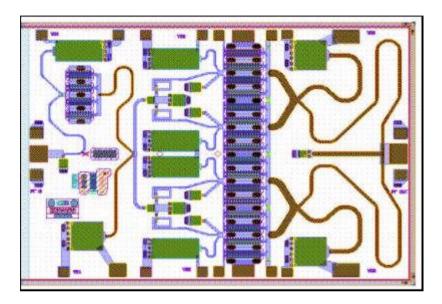
- PAE is maintained above 80% from 3.5 W to 11.2 W RF power out!
- A very effective high efficiency variable power amplifier


GaN can facilitate very high efficiency phased arrays with variable power *on-demand* for future growth or to counter immediate threats

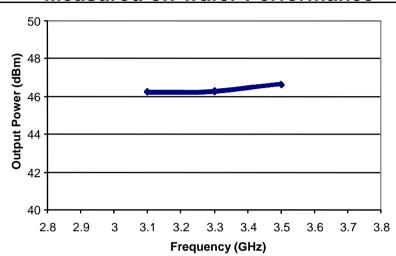
Approach Validated at Higher CREE Frequencies and Moderate Bandwidths

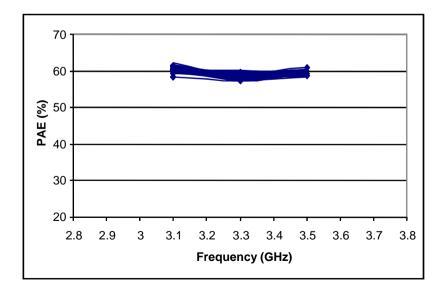
GaN can facilitate very high efficiency phased arrays at the higher frequency bands

Approach Validated at Higher Power Levels



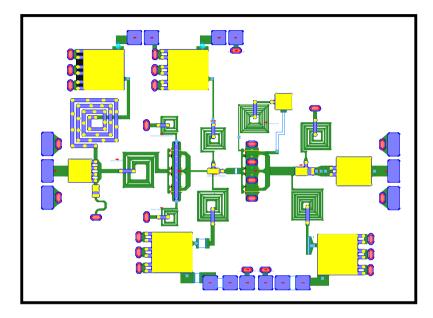
Sponsored by Dr. Mike Harris, US Air Force, SWARM, FA8650-08-D-1302-0005



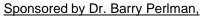

Two-Stage High Efficiency GaN S-Band HPA MMIC

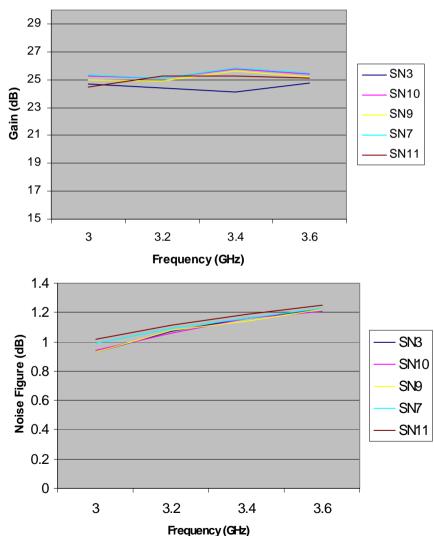
- Bandwidth: 3.1-3.5 GHz
- 2-Stage (2mm driving 12mm)
- RF P_{OUT}: 40 watts min at 28V
- PAE: 60% (Typ)
- Associated Gain: 25dB (typical)
- Size: 4.0mm X 3.0mm

Measured on-wafer Performance


Sponsored by Dr. Barry Perlman,

US Army Research, Development and Engineering Command (RDECOM) Communications-Electronics R&DE Center (CERDEC)



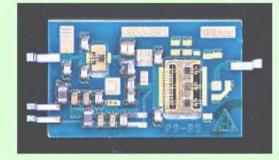

High Dynamic Range GaN LNA

- Bandwidth: 3.1-3.5 GHz
- Nominal gain: 25dB
- Noise Figure: 1.1 dB (Typ)
- Output TOI: 34.5 dBm
- Size: 3.2mm X 2.3mm

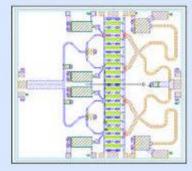
US Army Research, Development and Engineering Command (RDECOM) Communications-Electronics R&DE Center (CERDEC)

Measured Performance

Cree S-Band COTS WiMAX Products

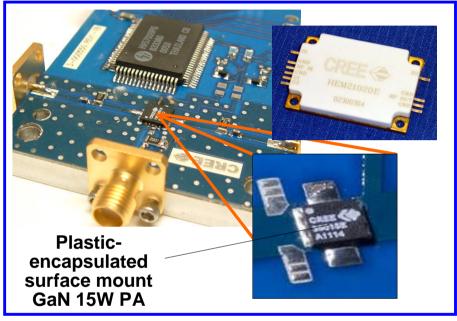

Components

Modules


RF ICs

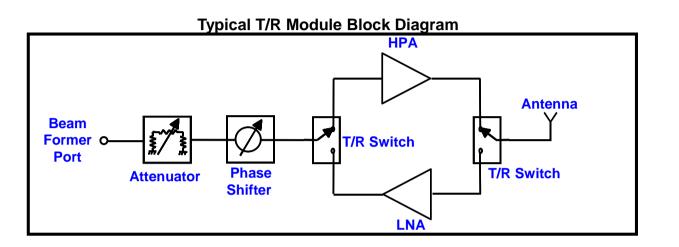
- Frequency: 2.0 to 4.0 GHz
- Gain: 13dB
- P3dB ~ 13W
- PAE: 60%
- Vdd: 28V
- Technology: GaN

- Frequency: 3.4 to 3.8 GHz
- Gain: 15dB
- P1dB ~ 30W
- PAE: 40%
- Vdd: 48V
- Technology SiC


- Frequency: 3.3 to 3.9 GHz
- Gain: 15dB
- P1dB: 60W, P_{AVG}~7W_{@2% EVM}
- PAE: 58-60% @ P_{SAT}
- Vdd: 28V
- Technology: GaN

Cree has developed low cost COTS components for numerous commercial applications

Commercial "COTS" T/R modules


Commercial Module Construction

- PC "motherboard" construction
- Low cost, high volume assembly
- Low power dissipation surfacemount commercial components
- Non-hermetic assembly

Next generation WiMAX systems will utilize low cost COTS T/R Modules in commercial phased array antennas

Typical S-Band T/R Module GaN MMIC Component Performance

Component	6 bit Attenuator	6 bit Phase Shifter	LNA	2-stage Power Amp	T/R Switch
Frequency (GHz)	2.7 – 3.5	2.7 – 3.5	2.7 – 3.5	3.1 – 3.5	2.7 – 3.5
Pout or TOI	51 dBm	51 dBm	34.5 dBm 0T0l	40 Watts	>20W @P _{.1dB}
Gain / Loss	-4.9 dB	-5.6 dB	25 dB	25 dB	-0.75 dB
NF or PAE			1.2 dB NF	60% PAE	
Size	2.5mm x 3mm	3mm x 3mm	3.2mm x 2.3mm	4.0mm x 3mm	2mm x 2mm

GaN MMICs for Next Generation T/R Modules are already being developed with excellent results

GaN Benefits for MPAR

- Next generation MPAR T/R modules must use COTS components and processes to achieve lowest cost
 - Similar to commercial PC motherboard construction
 - Use of surface-mount plastic encapsulated components
 - Leveraging commercial production lines and manufacturing infrastructure
- GaN technology can offer significant cost and performance benefits:
 - Ultra-high efficiency PAs
 - Low cost surface-mount assembly
 - Air cooling
 - Lower prime power consumption
 - Facilitates variable power out while maintaining high efficiency
 - High power density
 - Smaller, lower cost RF ICs
 - High dynamic range low noise amplifiers (LNAs)
 - Higher voltage operation (28V migrating to 48V)
 - Lower DC distribution losses / Improved system efficiency
- Will exploit commercial market leverage (COTS)
 - Future commercial base stations WILL use GaN based PAs and RF ICs
 - Many will be phased array antennas

GaN enables a wider trade-space for system optimization

What Additional R&D is Needed to CREE Keep the Momentum Going?

- Further GaN switch-mode device and circuit optimization
 - > Device improvements to further optimize switch-mode performance
 - Improved time-transient RF device circuit models
 - Switch-mode circuit topology optimization
 - Bandwidth enlargement using advanced circuit design techniques
- Device Power, Cost, and Thermal Optimization
 - Ultra-high efficiency PAs permit the use of smaller periphery die leading to lower cost
 - Optimal die size depends on total power and max channel temperature permissible
 - Trade space and optimization application dependent
- Device / Module Packaging and Interconnects
 - Further development required to support low cost, non-hermetic surface-mount devices, RF ICs, and modules
 - RF
 - Mechanical
 - Thermal
 - Environmental